PC (polycarbonate)

Production-Grade Thermoplastic for Fortus 3D Production Systems

A true industrial thermoplastic, PC (polycarbonate) is widely used in automotive, aerospace, medical and many other applications. PC offers accuracy, durability and stability, creating strong parts that withstand functional testing. A PC part manufactured on a Fortus[®] 3D Production System is 5 to 60 percent stronger than a part made on previous FDM[®] systems. It also has superior mechanical properties to ABS and a number of other thermoplastics. When combined with a Fortus 3D Production System, PC gives you strong parts for conceptual modeling, functional prototyping, manufacturing tools, and end-use parts. PC runs the Xtend 500 Fortus Plus option, which enables more than 400 hours of unattended build time.

Mechanical Properties ¹	T	English			M	Metric	
	Test Method	XZ A	xis	ZX Axis	XZ Axis	ZX Axis	
Tensile Strength, Yield (Type 1, 0.125", 0.2"/min)	ASTM D638	5,800 psi		4,300 psi	40 MPa	30 MPa	
Tensile Strength, Ultimate (Type 1, 0.125", 0.2"/min)	ASTM D638	8,300) psi	6,100 psi	57 MPa	42 MPa	
Tensile Modulus (Type 1, 0.125", 0.2"/min)	ASTM D638	282,0)00 psi	284,000 psi	1,944 MPa	1,958 MPa	
Tensile Elongation at Break (Type 1, 0.125", 0.2"/min)	ASTM D638	4.8%		2.5%	4.8%	2.5%	
Tensile Elongation at Yield (Type 1, 0.125", 0.2"/min)	ASTM D638	2.2%		2%	2.2%	2%	
Flexural Strength (Method 1, 0.05"/min)	ASTM D790	13,00	0 psi	9,900 psi	89 MPa	68 MPa	
Flexural Modulus (Method 1, 0.05"/min)	ASTM D790	291,0	00 psi	261,000 psi	2,006 MPa	1,800 MPa	
Flexural Strain at Break (Method 1, 0.05"/min)	ASTM D790	No br	eak	4%	No break	4%	
IZOD Impact, notched (Method A, 23°C)	ASTM D256	1.4 ft-	-lb/in	0.5 ft-lb/in	73 J/m	28 J/m	
IZOD Impact, un-notched (Method A, 23°C)	ASTM D256	16.4 f	ft-lb/in	3.5 ft-lb/in	877 J/m	187 J/m	
Compressive Strength, Yield (Method 1, 0.05"/min)	ASTM D695	10,00	00 psi	9,200 psi	69 MPa	64 MPa	
Compressive Strength, Ultimate (Method 1, 0.05"/min)	ASTM D695	28,00	00 psi	9,400 psi	193 MPa	65 MPa	
Compressive Modulus (Method 1, 0.05"/min)	ASTM D695	1,100	,000 psi	227,000 psi	7,564 MPa	1,565 MPa	
Thermal Properties ²	Test Method		Englis	h	Metric		
Heat Deflection (HDT) @ 66 psi	ASTM D648		280°F		138°C		
Heat Deflection (HDT) @ 264 psi	ASTM D648		261°F		127°C		
Vicat Softening	ASTM D1525		282°F		139°C		
Glass Transition (Tg)	DMA (SSYS)		322°F		161°C		
Melting Point			Not App	olicable3	Not Applic	able ³	
Electrical Properties⁴	Test Method		Value	Range			
Volume Resistivity	ASTM D257		6.0x10 ¹³ - 2.0x10 ¹⁴ ohm-cm				
Dielectric Constant	ASTM D150-98	STM D150-98		2.8 - 3.0			
Dissipation Factor	ASTM D150-98		.00050006				
Dielectric Strength	ASTM D149-09, Me	thod A	80 - 360) V/mil			

Other ²	Test Method	Value
Specific Gravity	ASTM D792	1.2
Flame Classification	UL94	НВ
Coefficient of Thermal Expansion	ASTM E831	3.8x10 ⁻⁰⁵ in/in/°F
Rockwell Hardness	ASTM D785	R115
UL File Number		E345258

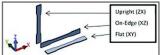
System Availability	Layer Thickness Capability	Support Structure	Available Colors
Fortus 360mc [™] Fortus 380mc [™] Fortus 400mc [™] Fortus 450mc [™] Fortus 900mc [™]	0.013 inch (0.330 mm) 0.010 inch (0.254 mm) 0.007 inch (0.178 mm) 0.005 inch (0.127 mm)5	Breakaway, Soluble	□ White

The information presented are typical values intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. End-use material performance can be impacted (+/-) by, but not limited to, part design, end-use conditions, test conditions, etc. Actual values will vary with build conditions. Tested parts were built on Fortus 400mc @ 0.010" (0.254 mm) slice. Product specifications are subject to change without notice.

The performance characteristics of these materials may vary according to application, operating conditions, or end use. Each user is responsible for determining that the Stratasys material is safe, lawful, and technically suitable for the intended application, as well as for identifying the proper disposal (or recycling) method consistent with applicable environmental laws and regulations. Stratasys makes no warranties of any kind, express or implied, including, but not limited to, the warranties of merchantability, fitness for a particular use, or warranty against patent infringement.

¹Build orientation is on side long edge.

²Literature value unless otherwise noted.


³Due to amorphous nature, material does not display a melting point.

⁴All Electrical Property values were generated from the average of test plaques built with default part density (solid). Test plaques were 4.0 x 4.0 x 0.1 inches (102 x 102 x 2.5 mm) and were built both in the flat and vertical orientation. The range of values is mostly the result of the difference in properties of test plaques built in the flat vs. vertical orientation.

⁵PC can attain 0.005 inch (0.127mm) layer thickness when used with SR-100 soluble support. 0.005 inch layer thickness is not available on the Fortus 900mc.

Orientation: See Stratasys Testing white paper for more detailed description of build orien tations.

Stratasys | www.stratasys.com | info@stratasys.com

7665 Commerce Way
Eden Prairie, MN 55344
+1 888 480-3548 (US Toll Free)
+1 952 937-3000 (Intl)

+1 952 937-0070 (Fax)

2 Holtzman St., Science Park, PO Box 2496 Rehovot 76124, Israel +972 74 745-4000 +972 74 745-5000 (Fax)

©2015 Stratasys Inc. All rights reserved. Stratasys, FDM, Fortus and Finishing Touch are registered trademarks of Stratasys Inc. FDM Technology, Fused Deposition Modeling, Fortus 250mc, Fortus 360mc, Fortus 450mc, Fortus 450mc, Fortus 900mc, Insight, Control Center, FDM Team, Smart Supports, SR-30, SR-100, ABSplus, ABS-ESD7, ABSi and TouchWorks are trademarks of Stratasys, Inc. *ULTEM is a trademark of SABIC Innovative Plastics IP BV. All other trademarks are the property of their respective owners, and Stratasys assumes no responsibility with regard to the selection, performance, or use of these non-Stratasys products. Product specifications subject to change without notice. Printed in the USA. MaterialSS-FDM-PC-03-15-EN

At the core: Advanced FDM Technology

Fortus systems are based on FDM (fused deposition modeling) technology. FDM is the industry's leading additive manufacturing technology, and the only one that uses production-grade thermoplastics, enabling the most durable parts.

Fortus systems use a wide range of thermoplastics with advanced mechanical properties so your parts can endure high heat, caustic chemicals, sterilization and high-impact applications.

No special facilities needed

You can install a Fortus 3D Production System just about anywhere. No special venting is required because Fortus systems don't produce noxious fumes, chemicals or waste.

No special skills needed

Fortus 3D Production Systems are easy to operate and maintain compared to other additive fabrication systems because there are no messy powders to handle and contain. They're so simple, an operator can be trained to operate a Fortus system in less than 30 minutes.

Get your benchmark on the future of manufacturing

Fine details. Smooth surface finishes. Accuracy. Strength. The best way to see the advantages of a Fortus 3D Production System is to have your own part built on a Fortus system. Get your free part at: <u>stratasys.com</u>.

