ABS-M30 Production-Grade Thermoplastic for Fortus 3D Production Systems

ABS-M30™ is up to 25 to 70 percent stronger than standard ABS and is an ideal material for conceptual modeling, functional prototyping, manufacturing tools and end-use-parts. ABS-M30 has greater tensile, impact and flexural strength than standard ABS. Layer bonding is significantly stronger than that of standard ABS, for a more durable part. This results in more realistic functional tests and higher quality parts for end use. ABS-M30 parts are stronger, smoother and have better feature detail. ABS-M30 runs the Xtend 500 Fortus Plus option, which enables more than 400 hours of unattended build time.

Mechanical Properties ¹	Test Method	English		Metric	
		XZ Axis	ZX Axis	XZ Axis	ZX Axis
Tensile Strength, Yield (Type 1, 0.125", 0.2"/min)	ASTM D638	4,550 psi	3,750 psi	31 MPa	26 MPa
Tensile Strength, Ultimate (Type 1, 0.125", 0.2"/min)	ASTM D638	4,650 psi	4,050 psi	32 MPa	28 MPa
Tensile Modulus (Type 1, 0.125", 0.2"/min)	ASTM D638	320,000 psi	310,000 psi	2,230 MPa	2,180 MPa
Tensile Elongation at Break (Type 1, 0.125", 0.2"/min)	ASTM D638	7%	2%	7%	2%
Tensile Elongation at Yield (Type 1, 0.125", 0.2"/min)	ASTM D638	2%	1%	2%	1%
Flexural Strength (Method 1, 0.05"/min)	ASTM D790	8,700 psi	7,000 psi	60 MPa	48 MPa
Flexural Modulus (Method 1, 0.05"/min)	ASTM D790	300,000 psi	250,000 psi	2,060 MPa	1,760 MPa
Flexural Strain at Break (Method 1, 0.05"/min)	ASTM D790	4%	3.5%	4%	3.5%

Mechanical Properties	Test Method	English	
	rest method	XZ Axis	ZX Axis
IZOD Impact, notched (Method A, 23°C)	ASTM D256	2.4 ft-lb/n	128 J/m
IZOD Impact, un-notched (Method A, 23°C)	ASTM D256	5.6 ft-lb/in	300 J/m

Thermal Properties ²	Test Method	English	Metric
ASTM D648	ASTM D648	204°F	96°C
Heat Deflection (HDT) @ 264 psi, 0.125" unannealed	ASTM D648	180°F	82°C
Vicat Softening Temperature (Rate B/50)	ASTM D1525	210°F	99°C
Glass Transition (Tg)	DMA (SSYS)	226°F	108°C
Coefficient of Thermal Expansion (flow)	ASTM E831	4.90x10 ⁻⁰⁵ in/in/°F	8.82x10 ⁻⁰⁵ mm/mm/°C
Coefficient of Thermal Expansion (xflow)	ASTM E831	4.70x10 ⁻⁰⁵ in/in/°F	8.46x10 ⁻⁰⁵ mm/mm/°C
Melting Point		Not Applicable ²	Not Applicable ²

ABS-M30

Electrical Properties ³	Test Method	Orientation	Value Range
Volume Resistivity	ASTM D257	XZ Axis	4.0x10 ¹⁵ - 3.3x10 ¹⁶ ohm-cm
Dielectric Constant	ASTM D150-98	XZ Axis	2.6 - 2.86
Dissipation Factor	ASTM D150-98	XZ Axis	0.0048 - 0.0054
Dielectric Strength	ASTM D149-09, Method A	XZ Axis	100 V/mil
Dielectric Strength	ASTM D149-09, Method A	XZ Axis	360 V/mil

Other ¹	Test Method	Value
Specific Gravity	ASTM D792	1.04
Flame Classification	UL94	HB (0.09", 2.50 mm)
Rockwell Hardness	ASTM D785	109.5
UL File Number		E345258

System Availability	Layer Thickness Capability	Support Structure	Available Colors
Fortus [®] 360mc™	0.013 inch (0.330 mm)	Soluble Supports	□ Ivory
Fortus 380mc™	0.010 inch (0.254 mm)		□ White ■ Black
Fortus 400mc™	0.007 inch (0.178 mm)		Dark Grey
Fortus 450mc™	0.005 inch (0.127 mm) ⁴		Red Blue
Fortus 900mc™			

ABS-M30

The information presented are typical values intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. End-use material performance can be impacted (+/-) by, but not limited to, part design, end-use conditions, test conditions, etc. Actual values will vary with build conditions. Tested parts were built on Fortus 400mc @ 0.010" (0.254 mm) slice. Product specifications are subject to change without notice.

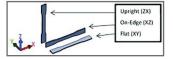
The performance characteristics of these materials may vary according to application, operating conditions or end use. Each user is responsible for determining that the Stratasys material is safe, lawful and technically suitable for the intended application, as well as for identifying the proper disposal (or recycling) method c onsistent with applicable environmental laws and regulations. Stratasys makes no warranties of any kind, express or implied, including, but not limited to, the warranties of merchantability, fitness for a particular use, or warranty against patent infringement.

¹Literature value unless otherwise noted.

²Due to amorphous nature, material does not display a melting point.

³All Electrical Property values were generated from the average of test plaques built with default part density (solid). Test plaques were $4.0 \times 4.0 \times 0.1$ inches ($102 \times 102 \times 2.5$ mm) and were built both in the flat and vertical orientation. The range of values is mostly the result of the difference in properties of test plaques built in the flat vs. vertical orientation.

⁴0.005 inch (0.127 mm) layer thickness not available for Fortus 900mc.


Colors: The test data was collected using ABS-M30 lvory (natural) specimens. ABS-M30 colored material will have similar properties,

but can vary by up to 10%. Orientation: See Stratasys T esting white paper for more detailed description of build orien tations.

• XZ = X or "on edge"

• XY = Y or "flat"

At the core: Advanced FDM Technology[™]

Fortus systems are based on Stratasys[®] FDM[®] (fused deposition modeling) technology. FDM is the industry's leading additive manufacturing technology, and the only one that uses productiongrade thermoplastics, enabling the most durable parts. Fortus systems use a wide range of thermoplastics with advanced mechanical properties so your parts can endure high heat, caustic chemicals,

No special facilities needed

You can install a Fortus 3D Production System just about anywhere. No special venting is required because Fortus systems don't produce noxious fumes, chemicals or waste.

No special skills needed

Fortus 3D Production Systems are easy to operate and maintain compared to other additive fabrication systems because there are no messy powders to handle and contain. They're so simple, an operator can be trained to operate a Fortus system in less than 30 minutes.

Get your benchmark on the future of manufacturing

Fine details. Smooth surface finishes. Accuracy. Strength. The best way to see the advantages of a Fortus 3D Production System is to have your own part built on a Fortus system. Get your free part at: <u>stratasys.com</u>.

ABS-M30

Stratasys | www.stratasys.com | info@stratasys.com

7665 Commerce Way Eden Prairie, MN 55344 +1 888 480-3548 (US Toll Free) +1 952 937-3000 (Intl) +1 952 937-0070 (Fax)

2 Holtzman St., Science Park, PO Box 2496 Rehovot 76124, Israel +972 74 745-4000 +972 74 745-5000 (Fax)

©2015, 2013 Stratasys Inc. All rights reserved. Stratasys, FDM, Fortus and Finishing Touch are registered trademarks of Stratasys Inc. FDM Technology, Fused Deposition Modeling, Fortus 200mc, Fortus 250mc, Fortus 360mc, Fortus 380mc, Fortus 400mc, Fortus 450mc, Fortus 900mc, Insight, Control Center, Smart Supports, SR-30, SR-100, ABSplus, ABS–ESD7, and TouchWorks are trademarks of Stratasys, Inc. "ULTEM is a trademark of SABIC Innovative Plastics IP BV. All other trademarks are the property of their respective owners, and Stratasys assumes no responsibility with regard to the selection, performance, or use of these non-Stratasys products. Product specifications subject to change without notice. Printed in the USA. MaterialSS-FDM-ABSM30-03-15

